Chemical profile, nutraceutical and anti-phytobacterial properties of the essential oil from Dalea foliolosa (Fabaceae)

  • Nemesio Villa- Ruano Universidad de la Sierra Sur, Guillermo Rojas Mijangos S/N, Ciudad Universitaria CP 70800, Miahuatlán de Porfirio Díaz Oaxaca, México
  • Yesenia Pacheco- Hernández Centro de Investigación en Biotecnología Aplicada-IPN, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, CP 90700, Tlaxcala, México
  • Efraín-Rubio- Rosas Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, CP 72570, Puebla, México
  • José A. Zárate- Reyes Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, CP 72570, Puebla, México
  • Edmundo Lozoya- Gloria Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km 9.6 Carretera Irapuato-León, CP 36821, Irapuato, Guanajuato, México
  • Ramiro Cruz- Durán Facultad de Ciencias UNAM, Ciudad Universitaria, México DF, Ciudad Universitaria, CP 04510, Del. Coyoacán, México


The present work describes the chemical composition of the leaf essential oils from the annual plant Dalea foliolosa, which was collected in three consecutive years (2014-2016). The amount of monoterpenes (69.5-84.6%) was higher to that of sesquiterpenes (10.3-22.9%) and aliphatic hydrocarbons (1-2.1%). Cryptone (22.3-30.6%) was the most abundant oxygenated monoterpene, followed by linalool (10.4-17.6%), caryophyllene oxide (4.6-15.3%), ascaridole (4.5-7.4%) and β-citronellol (3.8-5.6%). The hydrodistillated extract showed antioxidant activity against DPPH radical (IC50, 45-156 µg mL-1), strong anti-α-glucosidase activity (IC50, 14-47 µg mL-1) and inhibited the growth of Pseudomonas syringae pv. tabaci TBR2004 (MIC, 44-105 µg mL-1) and P. syringae pv. tomato DC3000 (MIC, 35-155 µg mL-1). The possible use of the essential oil as a novel additive for anti-hyperglycemic supplements and for the biological control of the analyzed Pseudomonas syringae varieties, may be contemplated.

Keywords: Antibacterial, Antioxidant, Anti-α-Glucosidase Dalea foliolosa, Essential Oils


Adams, R.P. 2007. Identification of essential oil components by gas chromatography/mass spectroscopy. 4th ed. Allured publishing Co. Carol Stream, IL, USA.
Arango, B.A.I., G.J. González, Z.J.E. Luque, B. Moreno. 1994. Potential insecticidal activity of sesquiterpenes present in Dalea coerulea (L.f.) Schinz. et Thellung. Agron. Colomb.11:164-174.
Woods, M. and W.S. Hughes. 2013. The genus Dalea (Fabaceae) in Alabama. Phytoneuron 2013-n: 1–12.
Basak, S.S. and F. Candan. 2013. Effect of Laurus nobilis L. essential oil and its main components on α-glucosidase and reactive oxygen species scavenging activity. Iran. J. Pharm. Res. 12: 367-379.
Benites, J., C. Moiteiro, A.C. Figueiredo, P. Rijo, P. Buc-Calderon, F. Bravo, S. Gajardo, I. Sánchez and M. Ganoza. 2016. Chemical composition and antimicrobial activity of essential oil of peruvian Dalea strobilacea Barneby. Bol. Latinoam. Caribe Plant. Med. Arom. 2016, 15: 429-435.
Dembitsky, V., I. Shkrob and L.O. Hanus. 2008. Ascaridole and related peroxides from the genus Chenopodium. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 152: 209-215.
Elaissi, A., Z. Rouis, N.B.A. Salem, S. Mabrouk, Y. Salem, K.B.H. Salah, M. Aouni, F. Farhat, R. Chemli, F. Harzallah-Skhiri and M.L. Khouja. 2012. Chemical composition of 8 Eucalyptus specie’s essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complement. Altern. Med. 12: 1.
Lucero, M.E, R.E Stell and R.L. Sedillo. 2005. The composition of Dalea formosa determined by steam distillation and solid phase microextraction. J. Essent. Oil Res. 17: 645-647.
Sarker, S.D., L. Nahar and Y. Kumarasamy. 2007. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42: 321–324.
Tongnuanchan, P. and S. Benjakul. 2014. Essential oils: extraction, bioactivities, and their uses for food preservation. J. Food Sci. 79: R1231-1249.
UNAM. 2017. Electronic Atlas of the Mexican Traditional Medicine [Web Page][cited 27/02/2017], Available from:
Vasinauskiene, M., J. Radusiene, I. Zitikaite and E. Surviliene. 2006. Antibacterial activities of essential oils from aromatic and medicinal plants against growth of phytopathogenic bacteria. Agron. Res. 4: 437-440.
Villa-Ruano, N., Y. Pacheco-Hernández, E. Rubio-Rosas, E. Lozoya-Gloria E., C. Mosso-González, L.G. Ramón-Canul and R. Cruz-Durán. 2015a. Essential oil composition and biological/pharmacological properties of Salmea scandens (L.) DC. Food Control 57: 177-184.
Villa-Ruano, N., Y. Pacheco-Hernández, R. Cruz-Durán and E. Lozoya-Gloria. 2015b. Volatiles and seasonal variation of the essential oil composition from the leaves of Clinopodium macrostemum var. laevigatum and its biological activities. Ind. Crop. Prod. 77: 741–747.
Villaseñor, R.J.L. and F.J.G. Espinosa. 1998. Catálogo de malezas de México. Universidad Nacional Autónoma de México. 1th ed. Consejo Nacional Consultivo Fitosanitario, Fondo de Cultura Económica, México.
259 Views | 247 Downloads
How to Cite
Ruano, N. V.-, Y. P.- Hernández, E.-R.- Rosas, J. A. Z.- Reyes, E. L.- Gloria, and R. C.- Durán. “Chemical Profile, Nutraceutical and Anti-Phytobacterial Properties of the Essential Oil from Dalea Foliolosa (Fabaceae)”. Emirates Journal of Food and Agriculture, Vol. 29, no. 9, Oct. 2017, pp. 724-8, doi: Accessed 30 June 2022.
Short Communication