Maize (Zea mays L.) landraces classified by drought stress tolerance at the seedling stage
DOI:
https://doi.org/10.9755/ejfa.2021.v33.i1.2356Abstract
Drought is the main limiting factor for maize production, and climate change can aggravate this water scarcity. One way to mitigate this problem is to plant drought tolerance maize genotypes. In landrace maize grown under rainfed conditions there are drought-adapted genotypes, which can be used in breeding programs for drought tolerance. The objective of this study was to evaluate the effect of an early water deficit on the seedling growth of 41 maize landraces from Nuevo León, Mexico, plus seven varieties, by means of drought tolerance indices based on biomass accumulation during both stress and post-stress recovery period, for identifying tolerant and susceptible genotypes. This study was performed at 2016 in Texcoco, Mexico (19°27’N, 98°54’W, 2241 masl). In the greenhouse, 96 treatments were compared (48 genotypes × two soil water regimes: without and with drought) under randomized complete blocks experimental design. After the drought stress period, normal irrigation was resumed for 15 days for recovery. In maize landraces there is genetic diversity in drought tolerance. Landraces GalTrini and SITexas outstanded as the most water deficit tolerant, whereas landraces Berrones, Rodeo, Sabanilla, Carmen, AraTrini and the inbred line L65 were the most drought susceptible. The total biomass measured before water stress was not related to drought adaptability. This study demonstrates that the post stress recovery is more important in drought stress adaptability than the drought resistance, regarding root biomass, shoot biomass and total biomass. Thus, to include the post stress recovery in drought tolerance studies can produce a more precise genotypic classification for drought stress resistance and adaptability.
Downloads
References
Anjorin, F. B., S. A. Adejumo, K. S. Are and D. J. Ogunniyan. 2017. Seedling establishment, biomass yield and water use efficiencies of four maize varieties as influenced by water deficit stress. Cercet. Agron. Mold. 50: 21-34.
Aslam, M., M. A. Maqbool and R. Cengiz. 2015. Drought stress in maize (Zea mays L.): Effects, resistance mechanisms, global achievements and biological strategies for improvement. Springer Briefs in Agriculture, Springer International Publishing, London, p. 74.
Badr, A., H. H. El-Shazly, R. A. Tarawneh and A. Börner. 2020. Screening for drought tolerance in maize (Zea mays L.) germplasm using germination and seedling traits under simulated drought conditions. Plants 9: 565.
Bashir, N., S. Mahmood, Z. Ullah, S. Rasul, H. Manzoor and H. Athar. 2016. Is drought tolerance in maize (Zea mays L.) cultivars at the juvenile stage maintained at the reproductive stage? Pak. J. Bot. 48: 1385-1392.
Belmont-Valadez R. 2018. Sobre-expresión de Rubisco activasa y de Dehidrina dhn1 en plantas de maíz por el método intragénico. Tesis de licenciatura en Química Farmacéutica Biológica, Facultad de Química, Universidad Nacional Autónoma de México, México.
Chen, D., S. Wang, B. Cao, D. Cao, G. Leng, H. Li, L. Yin, L. Shan and X. Deng. 2016. Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Front. Plant. Sci. 6: 1241.
Efeoğlu, B., Y. Ekmekçi and N. Çiçek. 2009. Physiological responses of three maize cultivars to drought stress and recovery. S. Afr. J. Bot. 75: 34-42.
Fan, X., G. Huang, L. Zhang, T. Deng and Y. Li. 2013. Adaptability and recovery capability of two maize inbred-line foundation genotypes, following treatment with progressive water-deficit stress and stress recovery. Agric. Sci. 4: 389-398.
Gil, M. A., P. A. López, O. A. Muñoz and H. S. López. 2004. Variedades criollas de maíz (Zea mays L.) en el estado de Puebla, México: diversidad y utilización. In: J. L. Chávez-Servia, J. Tuxill and D. I. Jarvis (Eds.), Manejo de la diversidad de los cultivos en los agroecosistemas tradicionales. Instituto Internacional de Recursos Fitogenéticos. Cali, Colombia, pp. 18-25.
Hellin, J., M. R. Bellon and S. J. Hearne. 2014. Maize landraces and adaptation to climate change in Mexico. J. Crop. Impr. 28: 484-501.
Hernández-Guillén, A. K. 2016. Identificación de plantas de maíz que sobre-expresen genes marcadores de mejoramiento genético. Tesis de licenciatura en Química de Alimentos. Facultad de Química, Universidad Nacional Autónoma de México, México..
Hunt, R. 1990. Basic growth analysis. Plant growth analysis for beginners. Unwin Hyman Ltd, London.
INEGI, 2019. Instituto Nacional de Estadística y Geografía. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos y Mapa digital V6. Instituto Nacional de Estadística y Geografía. Available at: http://gaia.inegi.org.mx/mdm6/?v=bGF0OjIzLjMyMDA4LGxvbjotMTAxLjUwMDAwLHo6MSxsOmMxMTFzZXJ2aWNpb3N8dGMxMTFzZXJ2aWNpb3M= [Last accessed on 2019 June 13].
Li, R., Y. Zeng, J. Xu, Q. Wang, F. Wu, M. Cao, H. Lan, Y. Liu and Y. Lu. 2015. Genetic variation for maize root architecture in response to drought stress at the seedling stage. Breed. Sci. 65: 298-307.
López-Santillán, J. A., S. Castro-Nava, C. Trejo-López, M. C. Mendoza-Castillo and J. Ortiz-Cereceres. 2004. Biomasa acumulada e intercambio gaseoso en maíz proveniente de semilla de diferente tamaño bajo humedad favorable y restringida. Phyton. 73: 243-248.
Mabhaudhi, T. and A. T. Modi. 2010. Early establishment performance of local and hybrid maize under two water stress regimes. S. Afr. J. Plant. Soil. 27: 299-304.
Martre, P., R. Morillon, F. Barrieu, G. B. North, P. S. Nobel and M. J. Chrispeels. 2002. Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant. Physiol. 130: 2101-2110.
Munns, R. and R. A. Richards. 2007. Recent advances in breeding wheat for drought and salt stresses. In: M. A. Jenks, P. M. Hasegawa and M. S. Jain (Eds.). Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer-Verlag, Berlin, pp. 565-585.
Pawar, K. R., S. G. Wagh, P. P. Sonune, S. R. Solunke, S. B. Solanke, S. G. Rathod and S. N. Harke. 2020. Analysis of water stress in different varieties of maize (Zea mays L.) at the early seedling stage. Biotechnol. J. Int. 24: 15-24.
Perrone, I., C. Pagliarani, C. Lovisolo, W. Chitarra, F. Roman and A. Schubert. 2012. Recovery from water stress affects grape leaf petiole transcriptome. Planta. 235: 1383-1396.
Richards, R. A., G. J. Rebetzke, A. G. Condon and A. F. Herwaarden. 2002. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop. Sci. 42: 111-121.
SAS Institute, 2015. Statistical analysis software for Windows version 9.4. Cary, North Carolina, USA: SAS Institute.
Teruel, M. E., C. A. Biasutti, M. C. Nazar and D. A. Peiretti. 2008. Efectos de aptitud combinatoria para vigor de plántula bajo estrés hídrico en maíz. Agriscientia 25: 27-34.
Trachsel, S., D. Sun, F. M. San Vicente, H. Zheng, E. A. Suarez, R. Babu and X. Zhang. 2016. Identification of QTL for early vigor and stay-green conferring tolerance to drought in two connected advanced backcross populations in tropical maize (Zea mays L.). PLoS One 11: e0163400.
Turner, N. C. 1979. Drought resistance and adaptation to water deficit in crop plants. In: H. Mussell and R. C. Staples, (Eds.). Stress physiology in crop plants. Wiley Interscience, New York, pp. 343-372.
Villalobos-González, A., C. López-Castañeda, S. Miranda-Colín, V. H. Aguilar-Rincón and M. B. López-Hernández. 2018. Efecto del estrés hídrico y nitrógeno en las raíces de variedades hibridas y criollas de maíz (Zea mays L.). Agroproductividad. 11: 3-8.
Xu, Z., G. Zhou and H. Shimizu. 2010. Plant responses to drought and rewatering. Plant. Signal. Behav. 5: 649