Influence of temperature and germination time on diastatic power of blue and red maize (Zea mays L.) malts
DOI:
https://doi.org/10.9755/ejfa.2021.v33.i1.2352Abstract
Maize endosperm consists of about 70 % starch, which makes it an excellent substrate for fermentation. However, due to its low diastatic power, it is used in brewing as an adjunct, mainly. In order to include both red and blue maize as an enzyme source in the brewing process, the effect of temperature and time germination on the diastatic power of malts was studied. The research consisted in a completely randomized three-factor experimental design where the involved factors were colour of maize (blue and red), germination temperature (15, 20, and 25 °C), and germination time (3, 4, 5, 6, 7, 8, and 9 days). The response variables were germination percentage, acrospire length, malting yield, and diastatic power. Data was analysed through Analysis of variance and Comparison Multiple Tukey’s Test. Results showed that both temperature and germination time encouraged the acrospire length, which had a negative effect on malting yield. Regarding to diastatic power, it maintained an increase from third to seventh germination day, at the three tested temperatures. Additionally, as the germination temperature increased, the diastatic power also increased. The highest diastatic power for blue and red maize malts were 39 and 42 °L, respectively, and it was reached when these malts were germinated for 7 days at 25 °C. It was concluded that, by germinating both blue and red maize under the resulting optimum conditions, the obtained malts would be capable of converting their own starch.
Downloads
References
2. Ribeiro Jr, G. O., M. L. Swift and T. A. McAllister. 2016. Effect of diastatic power and processing index on the feed value of barley grain for finishing feedlot cattle. J Anim Sci 94(8):3370-3381. DOI: doi:10.2527/jas2015-0068.
3. Farber, M. and R. Barth. 2019. Raw Materials: Malt, in Mastering Brewing Science: Quality and Production. John Wiley &Sons Inc, USA. p146
4. Looseley, M. O., M. Bayer, H. Bull, L. Ramsay, W. Thomas, A. Booth, C. De La Fuente-Canto, J. Morris, P. E. Hedley and J. Russell. 2017. Association mapping of diastatic power in UK winter and spring barley by exome sequencing of phenotypically contrasting variety sets. Front Plant Sci 8:1566 https://doi.org/10.3389/fpls.2017.01566
5. Henry, R. J. 1984. A Rapid Method for the Determination of Diastatic Power. J Inst Brew 90: 37-39.
6. Chaudhary, D., S. Kumar and S. Langyan. 2014. Nutritive Value of Maize: Improvements, Applications, and Constraints, in Maize: Nutrition Dynamics and Novel Uses. Springer, India. pp 11,135,139.
7. Iwouno, J. O. and M. Ojukwu. 2012. Effects of experimental variables on the malting quality of Nigerian yellow maize (Zea mayz), farz 27 variety. African Journal of Food Science and Technology 3: 252-259.
8. Meußdoerffer, F. and M. Zarnkow. 2009. Starchy raw materials, in Handbook of Brewing, Hans ME (ed), Eẞlinger H. Wiley-VCH, Germany. pp 56,57, 64
9. Vielle-Calzada, J. P. and J. Padilla. 2009. The Mexican landraces: description, classification and diversity. In: Handbook of maize: its biology. New York. Springer. p.543-561. DOI: 10.1007/978-0-387-79418-1_27.
10. Herrera-Cabrera B. E., F. Castillo-González, J. J. Sánchez-González, J. M. Hernández-Casillas, R. A. Ortega-Pazkca and M. Major-Goodman. 2004. Diversity of Chalqueño maize. Agrociencia 38: 191-206.
11. Arellano-Vázquez J. L., I. Rojas-Martínez and G. F. Gutiérrez-Hernández. 2014. Varieties of blue maize Chalqueño, selected for multiple characters and yield stability. Rev. Mexicana Cienc. Agric 5 (8): p. 1469-1480.
12. Eneje, L. O., E. O. Ogu, C. U. Aloh, F. J. Odibo, R. C. Agu and G. H. Palmer. 2004. Effect of steeping and germination time on malting performance of Nigerian white and yellow maize varieties. Process Biochem 39:1013-1016. https://doi.org/10.1016/S0032-9592(03)00202-4
13. Awoyinka, O. A. and O. O. Adebawo. 2008. Influence of malting time on α and β Amylases secretion in Nigerian amylolytic maize cultivars. Afr J Agric Res 3: 007-012.
14. Romero-Medina, M. A., M. Estarrón-Espinosa, J. R. Verde-Calvo, M. Lelièvre-Desmas and H. B. Escalona-Buendía. 2020. Renewing traditions: A sensory and chemical characterisation of Mexican pigmented corn beers. Foods 2020, 9, 886.
15. Flores-Calderón, A. M. D., H. Luna, H. B. Escalona-Buendía and J. R. Verde-Calvo. 2017. Chemical characterization and antioxidant capacity in blue corn (Zea mays L.) malt beers. J. Inst. Brew. 123:506–518.
16. Verde-Calvo, J. R., H. B. Escalona-Buendía, N. N. Cruz-Rodríguez and M. A. Romero-Medina. Proceso para la elaboración de cerveza antioxidante a base de maíz malteado azul y rojo. Mexico Patent 365910, 13 June 2019.
17. NOM-116-SSA1-1994. Bienes y servicios. Determinación de humedad en alimentos por tratamiento térmico. Método por arena o gasa. Diario Oficial de la Federación. Mexico. 1995.
18. NMX-F-613-NORMEX-2017. Alimentos-determinación de fibra cruda en alimentos-método de prueba. Diario Oficial de la Federación. Mexico. 2018.
19. NMX-F-608-NORMEX-2011. Alimentos-determinación de proteínas en alimentos-método de ensayo. Diario Oficial de la Federación. Mexico. 2011.
20. NOM-086-SSA1-1994. Bienes y servicios. Alimentos y bebidas no alcohólicas con modificaciones en su composición. Diario Oficial de la Federación. Mexico. 2011.
21. NMX-F-607-NORMEX-2013. Alimentos-determinación de cenizas en alimentos-método de prueba. Diario Oficial de la Federación. Mexico. 2013.
22. Ramdath, D. D., L. Zhan-HuI, P. L. Maharaj, J. Winberg, Y. Brummer and A. Hawke. 2020. Proximate analysis and nutritional evaluation of twenty Canadian lentils by principal component and cluster analyses. Foods 9 (175): 1-16.
23. Deivasigamani, S. and C. Swaminathan. 2018. Evaluation of seed test weight on major field crops. Int. J. Res. Stud. Agric. Sci. 4 (1):8-11. http://dx.doi.org/10.20431/2454-6224.0401001
24. Saba, S. J., S. A. Kamal, M. Sadegh, T. T. Avishan and G. Alireza. 2014. Effects of elevated temperatures on seed germination and seedling growth in three medicinal plants. Int. J. Agric. Crop Sci. 7(4):173-177.
25. Dahiya, R., R. B. Yadav, B. S. Yadav and R. Yadav. 2018. Quality characteristics of pearl millet malt as affected by steeping temperature and germination period. Qual. Assur. Saf. Crop. Foods.10 (1): 41-50.
26. Odo, M., P. Okorie, O. Ikegwu and M. Kalu. 2016. Malting potentials of hybrid and local varieties of rice. Asian Journal of Agriculture and Food Sciences 4 (3): 146-151.
27. 2004. ASBC Methods of analysis. Malt method 6: Diastatic power. American Society of Brewing Chemists, St. Paul, MN, U.S.A
28. Anon. 1982. Recommended methods of analysis. Institute of Brewing, London.
29. Home, S. and R. Sharpe. 2007. Revision of EBC Method 4.12 for Diastatic Power. European Brewery Convention 113 (3):337.
30. NCSS 2020 Statistical Software (2020). NCSS, LLC. Kaysville, Utah, USA, ncss.com/software/ncss.
31. Peña-Betancourt, S. D., R. Gutiérrez-Tolentino, B. Schettino. 2017. Proximate composition, fatty acid profile and mycotoxin contamination in several varieties of Mexican maize. Food Nutr Sci. 8: 865-872.
32. Sánchez-Madrigal, M. A., C. O. Meléndez-Pizarro, F. Martínez-Bustos, M. G. Ruiz-Gutiérrez, A. Quintero-Ramos, R. Márquez-Meléndez, D. Lardizábal-Gutiérrez and K. Campos-Venegas. 2014. Structural, functional, thermal and rheological properties of nixtamalised and extruded blue maize (Zea mays L.) flour with different calcium sources. Int. J. Food Sci. Technol. 49: 578–586.
33. Adeniyi, O. O. and O. S. Ariwoola. 2019. Comparative proximate composition of maize (Zea mays L.) varieties grown in south-western Nigeria. International Annals of Science 7 (1): 1-5.
34. Sulewska, H., K. Śmiatacz, G. Szymańska, K. Panasiewicz, H. Bandurska and R. Głowicka- Wołoszyn. 2014. Seed size effect on yield quantity and quality of maize (Zea mays L.) cultivated in South East Baltic region. Zemdirbyste 101 (1): 35–40. https://doi.org/10.13080/z-a.2014.101.005
35. Agama-Acevedo, E., Y. Salinas-Moreno, G. Pacheco-Vargas and L. A. Bello-Pérez. 2011. Physical and chemical characteristics of blue corn from two races: starch morphology. Rev Mex De Cienc Agric 2 (3):317-329.
36. Rocandio-Rodríguez, M., A. Santacruz-Varela, L. Córdova-Téllez, H. López-Sánchez, F. Castillo-González, R. Lobato-Ortiz, J. J. García-Zavala and R. Ortega-Paczka. 2014. Morphological and agronomic characterization of seven maize races from the highlands of Mexico. Rev Fitotec Mex 37 (4): 351– 361.
37. Silva-Neta, I. C., E. V. Pinho, A. D. Veiga, R. G. Pinho, R. M. Guimarães, F. Caixeta, H. O. Santos and T. L. Marques. 2015. Expression of genes related to tolerance to low temperature for maize seed germination. Genetics and Molecular Research 14 (1): 2674-2690.
38. Zakeyeldinn, E. A., M. A. Mustafa, C. Jinghua and T. Zenda. 2018. Germination of corn (Zea Mays L.) cultivars seed and its relationship to field performance under semi-arid conditions. IOSR J Agric Vet Sci 11 (6): 32-40. https://doi.org/10.9790/2380-1106023240
39. Garoma, B., T. Chibsa, T. Keno and Y. Denbi. 2017. Effect of storage period on seed germination of different maize. J Nat Sci Res 7 (4): 2224-3186.
40. Evans, C. E. and O. A. Monday. 2009. Predicting α-amylase yield and malt quality of some sprouting cereals using 2nd order polynomial model. Afr. J. Biochem. Res. 3 (8): 288-292.
41. Akinnuoye, D. B. and A. T. Modi. 2015. Germination Characteristics of SC701 Maize Hybrid According to Size and Shape at Different Temperature Regimes. Plant Prod. Sci. 18 (4): 514―521.
42. Ennen, R. and M. Jeschke. 2020. Soil temperature and corn emergence. Agronomy Research Summary. Corteva Agriscience. 28-32.
43. Hatfield, J. L. and J. H. Prueger. 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes. http://dx.doi.org/10.1016/j.wace.2015.08.001.
44. Pietruszka, M. and A. Haduch-Sendecka. 2016. Effective diffusion rates and cross-correlation analysis of ‘‘acid growth’’ data. Acta Physiol Plant 38:53. DOI 10.1007/s11738-016-2068-z
45. Grain Research & Development Corporation (GRDC). 2016. Wheat: Plant growth and physiology. p1-9.
46. Quint, M., C. Delker, K. A. Franklin, P. A. Wigge, K. J. Halliday and M. van Zanten. 2016. Molecular and genetic control of plant thermomorphogenesis. Nat. Plants 2, 15190.
47. Ndife, J., C. U. Nwokedi and F. U. Ugwuona. 2019. Optimization of malting and saccharification in the production of malt beverage from maize. Nigerian Journal of Agriculture, Food and Environment. 15(1): 134-141.
48. Lekjing, S. and K. Venkatachalam. 2020. Effects of germination time and kilning temperature on the malting characteristics, biochemical and structural properties of HomChaiya rice. RSC Adv. 10, 16254–16265.
49. Olugbile, A. O., A. O. Abadina, A. O. Atanda, O. B. Omemu and S. O. A. Olatope. 2015. Physicochemical changes and diastatic activity associated with germination of ‘Boromo’, a paddy rice variety from western Nigeria. J. Food Process. Preserv. 39: 116-122.
50. Farzaneh, V., A. Ghodsvali, H. Bakhshabadi, Z. Zare and I. S. Carvalho. 2017. The impact of germination time on some selected parameters through malting process. Int. J. Biol. Macromol. 94:663-668.
51. Eburuche, O. B., R. N. Attaugwu and H. E. Ufondu. 2019. Composition and hardness of malting red and white kaffir sorghum [Sorghum bicolor (L.) Moench] dried under the sun. J Food Sci Technol 56 (7):3513–3523. https://doi.org/10.1007/s13197-019-03843-1
52. Claver, I. P., H. Zhang, Q. Li, H. Zhou and K. Zhu. 2010. Optimized conditions of steeping and germination and their effect on sorghum [Sorghum bicolor (L.) Moench] composition. Pak. J. Nutr. 9 (7): 686-695
53. Vinje, M. A., S. H. Duke and C. A. Henson. 2015. Comparison of Factors Involved in Starch Degradation in Barley Germination Under Laboratory and Malting Conditions. J Am Soc Brew Chem 73(2):195-205. http://dx.doi.org/10.1094/ASBCJ-2015-0318-01
54. Derek, J. 2001. Seed germination and reserve mobilization. Encyclopaedia of life sciences. Nature Publishing Group. pp 1-7.
55. ASBC.1990. Diastatic Power (Rapid Method). J Am Soc Brew Chem, 48:4, 143-145. DOI: 10.1094/ASBCJ-48-0143
56. Singh, T. and G. S. Bains. 1984. Malting of corn: Effect of Variety, Germination, Gibberellic Acid, and Alkali Pretreatments. J. Agric. Food Chem. 1904, 32, 346-348.
57. Helland, M. H., T. Wicklund and J. A. Narvhus. 2002. Effect of germination time on alpha-amylase production and viscosity of maize porridge. Food Res Int 35 (2002) 315-321.
58. Aniche, N. G and N. Okafor. 1989. Studies on the effect of germination time and temperature on malting of rice. J. Inst. Brew. 95:165-167. https://doi.org/10.1002/j.2050-0416.1989.tb04622.x
59. Lewis, M. J. and T. W. Young. 2001. Malting biochemistry, in Brewing. Springer Books. pp191-204
60. Agu, R. C., J. M. Brosnan, T. A. Bringhurst, G. H. Palmer and F. R. Jack. 2007. Influence of Corn Size Distribution on the Diastatic Power of Malted Barley and its Impact on Other Malt Quality Parameters. J. Agric. Food Chem. 55, 3702−3707.
61. Dziedzoave, N. T., A. J. Graffham, A. Westby and G. Komlaga. 2010. Comparative assessment of amylolytic and cellulolytic enzyme activity of malts prepared from tropical cereals. Food Control 21: 1349-1353.
62. Evangelista-Oliveira, G., R. Garcia-Von Pinho, T. De Andrade, E. V. De Resende-Von Pinho, C. Donizete-Dos Santos and A. Delly-Veiga. 2013. Physiological quality and amylase enzyme expression in maize seeds. Cienc. Agrotec., Lavras.37(1):40-48
63. Arends, A. M., G. P. Fox, R. J. Henry, R. J. Marschke and M. H. Symons. 1995. Genetic and environmental variation in the diastatic power of Australian barley. J Cereal Sci. 21(1):63–70. https://doi: 10.1016/S0733-5210(95)80009-3