Antagonistic effect of volatile and non-volatile compounds from Streptomyces strains on cultures of several phytopathogenic fungi

  • Daniel Alonso Pérez Corral Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Cd. Cuauhtémoc, Chihuahua, México.
  • José de Jesús Ornelas Paz Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Cd. Cuauhtémoc, Chihuahua, México.
  • Guadalupe Isela Olivas Orozco Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Cd. Cuauhtémoc, Chihuahua, México.
  • Carlos Horacio Acosta Muñiz Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Cd. Cuauhtémoc, Chihuahua, México.
  • Miguel Ángel Salas Marina Universidad de Ciencias y Artes de Chiapas, División de Ingeniería, Villa Corzo, Chiapas, México.
  • María Fernanda Ruiz Cisneros Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Cd. Cuauhtémoc, Chihuahua, México.
  • Francisco Javier Molina Corral Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Cd. Cuauhtémoc, Chihuahua, México.
  • Sylvia Patricia Fernández Pavía Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.
  • Claudio Rios Velasco Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Cd. Cuauhtémoc, Chihuahua, México.


Fungi and oomycetes are important plant pathogens that constantly attacked plants, thus compromising the production of foods worldwide. Streptomyces strains might be useful to control fungal pathogens by different mechanism. The in vitro antagonistic activity of non-volatile and volatile metabolites from four Streptomyces strains was evaluated over cultures of phytopathogenic fungi and oomycetes. The non-volatile compounds from Streptomyces strains significantly reduced (44.2 to 92.1%) the growth of aerial mycelium of pathogens. The volatile compounds (VOCs) from Streptomyces strains reduced both aerial mycelium (22.5 to 96.7%) and mycelium growing inside of culture medium (0.0 - 9.4%). The pathogens maintained their capacity to grow normally in fresh culture medium without antagonists after confrontations with antagonist VOCs. The analysis of VOCs by gas chromatography coupled to mass spectrometry revealed different kinds of VOCs included alcohols, aldehydes, ketones, esters, terpenes, terpenoids, thioethers, among others. The most abundant VOCs were trans-1,10-dimethyl-trans-9-decalol (geosmin), 2-methylisoborneol, 2-methyl-2-bornene, 1,4-dimethyladamantane, and 4-penten-1-ol, trifluoroacetate. The antipathogenic activity of nine pure VOCs that had been identified in cultures of the Streptomyces strains alone was evaluated in vitro against phytopathogenic fungi and oomycetes. Trans-2-hexenal was the most effective of these VOCs, inhibiting completely the growth of tested phytopathogens. The volatile and non-volatile compounds from Streptomyces strains effectively reduced the in vitro growth of phytopathogens and they might be used as biological control. Further studies are required to demonstrate this activity on open field conditions.


Al_husnan, L. A., and Alkahtani, M. D. (2016). Molecular Identification of Streptomyces producing antibiotics and their antimicrobial activities. Ann. Agric. Sci. 61: 251-255
Amini, J., Agapoor, Z., and Ashengroph, M. (2016). Evaluation of Streptomyces spp. against Fusarium oxysporum f. sp. ciceris for the management of chickpea wilt. J. Plant Prot. Res. 56: 257-264
Angel, L. P. L., Yusof, M. T., Ismail, I. S., Ping, B. T. Y., Azni, I. N. A. M., Kamarudin, N. H., and Sundram, S. (2016). An in vitro study of the antifungal activity of Trichoderma virens 7b and a profile of its non-polar antifungal components released against Ganoderma boninense. J. Microbiol. 54: 732-744
Bebber, D. P., and Gurr, S. J. (2015). Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet. Biol. 74: 62-64
Boukaew, S., Plubrukam, A., and Prasertsan, P. (2013). Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. BioControl. 58: 471-482
Castro-Rocha, A., Shrestha, S., Lyon, B., Grimaldo-Pantoja, G. L., Flores-Marges, J. P., Valero-Galván, J., . . . Ávila-Quezada, G. (2016). An initial assessment of genetic diversity for Phytophthora capsici in northern and central Mexico. Mycol. Prog. 15: 15
Chaurasia, B., Pandey, A., Palni, L. M. S., Trivedi, P., Kumar, B., and Colvin, N. (2005). Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol. Res. 160: 75-81
Dávila-Medina, M. D., Gallegos-Morales, G., Hernández-Castillo, F. D., Ochoa-Fuente, Y. M., and Flores-Olivas, A. (2013). Actinomicetos antagónicos contra hongos fitopatógenos de importancia agrícola. Rev. Mexicana cienc. agric. 4: 1187-1196
de Jesus Sousa, J. A., and Olivares, F. L. (2016). Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chem. Biol. Technol. Agric. 3: 1-12
Dhanasekaran, D., Thajuddin, N., and Panneerselvam, A. (2009). Distribution and Ecobiology of Antagonistic Streptomyces from Agriculture and Coastal Soil in Tamil Nadu, India. J Cult Collect. 6: 10-20
Dias, M. P., Bastos, M. S., Xavier, V. B., Cassel, E., Astarita, L. V., and Santarém, E. R. (2017). Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiol. Biochem. 118: 479-493
Duffy, B., Schouten, A., and Raaijmakers, J. M. (2003). Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu. Rev. Phytopathol. 41: 501-538
Duthoit, F., Godon, J.-J., and Montel, M.-C. (2003). Bacterial community dynamics during production of registered designation of origin Salers cheese as evaluated by 16S rRNA gene single-strand conformation polymorphism analysis. Appl. Environ. Microbiol. 69: 3840-3848
Evangelista-Martínez, Z., Contreras-Leal, E. A., Corona-Pedraza, L. F., and Gastélum-Martínez, É. (2020). Biocontrol potential of Streptomyces sp. CACIS-1.5 CA against phytopathogenic fungi causing postharvest fruit diseases. Egypt J Biol Pest Control. 30: 1-10
Fernando, W. D., Ramarathnam, R., Krishnamoorthy, A. S., and Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 37: 955-964
Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., and Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature. 484: 186
Guevara-Avendaño, E., Bejarano-Bolívar, A. A., Kiel-Martínez, A.-L., Ramírez-Vázquez, M., Méndez-Bravo, A., von Wobeser, E. A., . . . Reverchon, F. (2019). Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiol. Res. 219: 74-83
Guo, Y., Ghirardo, A., Weber, B., Schnitzler, J.-P., Benz, J. P., and Rosenkranz, M. (2019). Trichoderma Species Differ in Their Volatile Profiles and in Antagonism Toward Ectomycorrhiza Laccaria bicolor. Front. Microbiol. 10: 891
Hernández-León, R., Rojas-Solís, D., Contreras-Pérez, M., del Carmen Orozco-Mosqueda, M., Macías-Rodríguez, L. I., Reyes-de la Cruz, H., . . . Santoyo, G. (2015). Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol. Control. 81: 83-92
Korpi, A., Järnberg, J., and Pasanen, A.-L. (2009). Microbial volatile organic compounds. Crit. Rev. Toxicol. 39: 139-193
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549
Latijnhouwers, M., de Wit, P. J., and Govers, F. (2003). Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol. 11: 462-469
Li, Q., Ning, P., Zheng, L., Huang, J., Li, G., and Hsiang, T. (2010). Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Postharvest Biol. Biotechnol. 58: 157-165
Li, Q., Ning, P., Zheng, L., Huang, J., Li, G., and Hsiang, T. (2012). Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol. Control. 61: 113-120
Li, X.-Y., Mao, Z.-C., Wu, Y.-X., Ho, H.-H., and He, Y.-Q. (2015). Comprehensive volatile organic compounds profiling of Bacillus species with biocontrol properties by head space solid phase microextraction with gas chromatography-mass spectrometry. Biocontrol Sci Technol. 25: 132-143
Lyu, A., Liu, H., Che, H., Yang, L., Zhang, J., Wu, M., . . . Li, G. (2017). Reveromycins A and B from Streptomyces sp. 3–10: antifungal activity against plant pathogenic fungi in vitro and in a strawberry food model system. Front. Microbiol. 8: 550
Ma, W., Zhao, L., Zhao, W., and Xie, Y. (2019). (E)-2-Hexenal, as a potential natural antifungal compound, inhibits Aspergillus flavus spore germination by disrupting mitochondrial energy metabolism. J. Agric. Food Chem. 67: 1138-1145
Marian, M., and Shimizu, M. (2019). Improving performance of microbial biocontrol agents against plant diseases. J. Gen. Plant Pathol.1-8
Möller, M., and Stukenbrock, E. H. (2017). Evolution and genome architecture in fungal plant pathogens. Nat. Rev. Microbiol. 15: 756
Park, C. N., Lee, J. M., Lee, D., and Kim, B. S. (2008). Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp. strain M10 antagonistic to Botrytis cinerea. J. Microbiol. Biotechnol. 18: 880-884
Pliego, C., Ramos, C., de Vicente, A., and Cazorla, F. M. (2011). Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant Soil. 340: 505-520
Quecine, M., Araujo, W., Marcon, J., Gai, C., Azevedo, J. L. d., and Pizzirani‐Kleiner, A. A. (2008). Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett. Appl. Microbiol. 47: 486-491
Raza, W., Yuan, J., Ling, N., Huang, Q., and Shen, Q. (2015). Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biol. Control. 80: 89-95
Rocha, P., Rodilla, J., Díez, D., Elder, H., Guala, M., Silva, L., and Pombo, E. (2012). Synergistic antibacterial activity of the essential oil of aguaribay (Schinus molle L.). Molecules. 17: 12023-12036
Rodriguez-Alvarado, G., Fernandez-Pavia, S., Geraldo-Verdugo, J., and Landa-Hernandez, L. (2001). Pythium aphanidermatum causing collar rot on papaya in Baja California Sur, Mexico. Plant Dis. 85: 444-444
Rojas-Solís, D., Zetter-Salmón, E., Contreras-Pérez, M., del Carmen Rocha-Granados, M., Macías-Rodríguez, L., and Santoyo, G. (2018). Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal. Agric. Biotechnol. 13: 46-52
Rouissi, W., Ugolini, L., Martini, C., Lazzeri, L., and Mari, M. (2013). Control of postharvest fungal pathogens by antifungal compounds from Penicillium expansum. J. Food Prot. 76: 1879-1886
Ruanpanun, P., Tangchitsomkid, N., Hyde, K. D., and Lumyong, S. (2010). Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 26: 1569-1578
Ruiz-Cisneros, M. F., Rios-Velasco, C., Berlanga-Reyes, D. I., Ornelas-Paz, J. d. J., Acosta-Muñiz, C. H., Romo-Chacón, A., . . . Ibarra-Rendón, J. (2017). Incidence and causal agents of root diseases and its antagonists in apple orchards of Chihuahua, México. Rev. Mex. fitopatol. 35: 1-26
Sánchez‐Ortiz, B., Sánchez‐Fernández, R., Duarte, G., Lappe‐Oliveras, P., and Macías‐Rubalcava, M. (2016). Antifungal, anti‐oomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus Xylaria sp. strain PB 3f3 isolated from Haematoxylon brasiletto. J. Appl. Microbiol. 120: 1313-1325
Scholler, C. E. G., Gurtler, H., Pedersen, R., Molin, S., and Wilkins, K. (2002). Volatile metabolites from actinomycetes. J. Agric. Food Chem. 50: 2615-2621
Sharma, M., Dangi, P., and Choudhary, M. (2014). Actinomycetes: source, identification, and their applications. Int. J. Curr. Microbiol. Appl. Sci. 3: 801-832
Sidda, J. D., and Corre, C. (2012). Gamma-butyrolactone and furan signaling systems in Streptomyces. United States of America: Academic Press.
Sikes, B. A., Bufford, J. L., Hulme, P. E., Cooper, J. A., Johnston, P. R., and Duncan, R. P. (2018). Import volumes and biosecurity interventions shape the arrival rate of fungal pathogens. PLoS Biol. 16: e2006025
Todosiichuk, T., Zelena, L., and Klochko, V. (2015). Multistage selection of soil actinomycete Streptomyces albus as a producer of antimicrobial substances. Emir J Food Agr250-257
Wan, M., Li, G., Zhang, J., Jiang, D., and Huang, H.-C. (2008). Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol. Control. 46: 552-559
Wang, Z., Wang, C., Li, F., Li, Z., Chen, M., Wang, Y., . . . Zhang, H. (2013). Fumigant activity of volatiles from Streptomyces alboflavus TD-1 against Fusarium moniliforme Sheldon. J. Microbiol. 51: 477-483
Watanabe, T. (2010). Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species: CRC press.
Wei-Wei, L., Wei, M., Zhu, B.-Y., Du, Y.-C., and Feng, L. (2008). Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agric. Sci. China. 7: 1104-1114
Wu, Y., Yuan, J., E, Y., Raza, W., Shen, Q., and Huang, Q. (2015). Effects of volatile organic compounds from Streptomyces albulus NJZJSA2 on growth of two fungal pathogens. J. Basic Microbiol. 55: 1104-1117
Yang, M., Lu, L., Pang, J., Hu, Y., Guo, Q., Li, Z., . . . Wang, C. (2019). Biocontrol activity of volatile organic compounds from Streptomyces alboflavus TD-1 against Aspergillus flavus growth and aflatoxin production. J. Microbiol. 57: 396-404
Zhang, J., Tian, H., Sun, H., and Wang, X. (2017). Antifungal activity of trans‐2‐hexenal against Penicillium cyclopium by a membrane damage mechanism. J. Food Biochem. 41: e12289