Nutraceutical quality of Opuntia ficus-indica developed under micro tunnel conditions, applying vermicompost

  • Alejandro Moreno Reséndez Universidad Autónoma Agraria Antonio Narro, Periférico Raúl López Sánchez S/N. Colonia Valle Verde, Torreón, Coahuila, México, CP. 27054.
  • Dalia Meza Córtes Universidad Autónoma Agraria Antonio Narro, Periférico Raúl López Sánchez S/N. Colonia Valle Verde, Torreón, Coahuila, México, CP. 27054.
  • José Luis Reyes Carrillo Universidad Autónoma Agraria Antonio Narro, Periférico Raúl López Sánchez S/N. Colonia Valle Verde, Torreón, Coahuila, México, CP. 27054.
  • Victoria Jared Borroel García Universidad Politécnica de Gómez Palacio. Carretera El Vergel - La Torreña, Km 0+820. El Vergel, CP 35120. Gómez Palacio, Dgo.
  • Mercedes Georgina Ramírez Aragón Universidad Politécnica de Gómez Palacio. Carretera El Vergel - La Torreña, Km 0+820. El Vergel, CP 35120. Gómez Palacio, Dgo.
  • Pablo Preciado Rangel Tecnológico Nacional de México, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Ejido Ana, Torreón, Coahuila, CP 27170
  • Jolanta Elzbieta Marszalek 4 Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Unidad Torreón, Ciudad Universitaria, Boulevard Matamoros s/n, San Ángel, Torreón, Coahuila, CP 27000. Member of the Red Académica de Innovación en Alimentos y Agricultura Sustentable (RAIAAS) – sponsored by Consejo Estatal de Ciencia y Tecnología (COECYT) y La Comunidad de Instituciones de Educación Superior de la Laguna (CIESLAG).

Abstract

The demand for Opuntia spp., cladodes has increased substantially due to their low caloric value, high fiber content, their nutritional and functional characteristics and beneficial effects and phytochemical composition. The aim of this work was to determine the content of biochemical components and the antioxidant capacity of the nopal developed under micro tunnel conditions, with VC as a source of fertilization. The plants were grown under micro tunnel conditions with the manual vermicompost application at 15, 30 and 45 t•ha-1. Between February and May 2019, four samplings of three cladodes (12 to 15 cm) from each treatment were obtained. Samples were stored at -20 °C prior to obtaining ethanol extracts. Total phenolic content and total flavonoids were determined using a modification of Folin-Ciocalteu and Zhishen methods, respectively. The ABTS+ test was performed with methodology proposed by Aubad-López. A split plot design, with two replicates, was used. The big plot corresponded to doses of vermicompost and subplots to the three varieties of nopal. Data were statistically analyzed by a two-way ANOVA with repeated measures. Statistical significance was obtained at 95 % confidence level (α = 0.05) using SPSS Statistics. The values recorded for the contents of total phenols, total flavonoids and the antioxidant activity, in the Chicomostoc, Chapingo and Narro varieties suggest that cladodes may be a promising source of natural antioxidants.

References

Álvarez-Solís, J. D., D. A. Gómez-Velasco, N. S. León-Martínez and F. A. Gutiérrez-Miceli. 2010. Integrated management of inorganic and organic fertilizers in maize cropping. Agrociencia. 44: 575-586
Astello-García, M. G., I. Cervantes, V. Nair, M. Santos-Díaz, A. del S. Reyes-Agüero, F. Guéraud, A. Negre-Salvayre, M. Rossignol, L. Cisneros-Zevallos and A. P. Barba-de la Rosa. 2015. Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient. J. Food Compos. Anal. 43: 119–130. DOI: https://doi.org/10.1016/j.jfca.2015.04.016
Aubad-López, P., B. A. Rojano, and T. Lobo-Echeverri. 2007. Actividad antioxidante en musgos. Sci. Tech. 13: 23-26. DOI: http://dx.doi.org/10.22517/23447214.5823.
Bargougui, A., H. M. Tag, M. Bouaziz and S. Triki. 2019. Antimicrobial, antioxidant, total phenols and flavonoids content of four cactus (Opuntia ficus-indica) cultivars. Biomed. Pharmac. J. 12: 1353-1368. DOI : https://dx.doi.org/10.13005/bpj/1764.
Chahdoura, H., J. C. M., Barreira, L. Barros, C. Santos-Buelga, I. C. F. R. Ferreira and L. Achour. 2014. Phytochemical characterization and antioxidant activity of the cladodes of Opuntia macrorhiza (Engelm.) and Opuntia microdasys (Lehm.). Food Func. 5: 2129-2136. http://dx.doi.org/10.1039/C4FO00456F
Chandra, S., S. Khan, B. Avula, H. Lata, M., H. Yang, M. A. ElSohly and I. A. Khan. 2014. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evid. Based Complement. Alternat. Med. 253875. DOI: https://doi.org/10.1155/2014/253875.
de Ancos, B., I. Fernández-Jalao and C. Sánchez-Moreno. 2016. Functional compounds in fresh-cut and ready-to-eat products. Rev. Iberoamer. Tecnol. Postcosecha. 17: 130-148.
de Santiago, E., M. Domínguez-Fernández, C. Cid and M-P. de Peña. 2018. Impact of cooking process on nutritional composition and antioxidants of cactus cladodes (Opuntia ficus-indica). Food Chem. 240: 1055-1062 DOI: http://dx.doi.org/10.1016/j.foodchem.2017.08.039
Dib, M.H., C. Beghdad, M. Belarbi, M. Seladji and M. Ghalem. 2013. Antioxidant activity of phenolic compounds of the cladodes of Opuntia ficus-indica mill. From Northwest Algeria. IJMPS. 3: 147-158.
Domínguez, J., M. Gómez-Brandón and C. Lazcano. 2010. Bio-pesticide properties of vermicompost. Acta Zool. Mex. (n. s.). Número Especial 2: 373-383.
du Toit, A., M. de Wit, G. Osthoff and A. Hugo. 2018. Antioxidant properties of fresh and processed cactus pear cladodes from selected Opuntia ficus-indica and O. robusta cultivars. S. Afr. J. Bot. 118: 44-51. https://doi.org/10.1016/j.sajb.2018.06.014
Escamilla-Jiménez, C. I., E. Y. Cuevas-Martínez and J. Guevara-Fonseca. 2009. Flavonoides y sus acciones antioxidantes. Rev. Fac. Med. UNAM. 52: 73-75.
Flores-Mendiola, G. R., H. Rodas-Gaitán, H. Rodríguez-Fuentes, J. A. Vidales-Contreras, E. Sánchez-Alejo and J. Aranda-Ruiz. 2012. Producción de biomasa seca y parámetros sensoriales de nopal verdura cultivado en forma hidropónica. RESPYN. Edición Especial: 175-190.
Fonseca-García, L., L. S. Calderón-Jaimes and M. E. Rivera. 2014. Antioxidant capacity and total phenol content in coffee and coffee by-products produced and marketed in Norte de Santander (Colombia). VITAE. 21: 228-236.
Fortis-Hernández, M., P. Preciado-Rangel, J. L. García-Hernández, A. Navarro-Bravo, J. Antonio-González and J. M. Omaña-Silvestre. 2012. Organic substrates in the production of sweet pepper. REMEXCA. 3: 1203-12161.
Galicia-Villanueva, S., P. E. Escamilla-García, H. Alvarado-Raya, L. V. Aquino-González, H. Serna-Álvarez and L. M. Hernández-Cruz. 2017. Experimental plantation of nopal for evaluation of fertilization and mucilage extraction systems. REMEXCA. 8: 1087-1099.
Gutiérrez-Pérez, C., H. Morales and F. Limón-Aguirre. 2013. Opinions about the quality of organic food products, and the origin of the local consumer network “Comida Sana y Cercana” in Chiapas. Rev. LiminaR. Est. Soc. y Human. 11: 104-117.
Ibrahim, M. H., H. Z. E. Jaafar, E. Karimi and A. Ghasemzadeh. 2012. Primary, secondary metabolites, photosynthetic capacity and antioxidant activity of the Malaysian herb kacip Fatimah (Labisia Pumila Benth) exposed to potassium fertilization under greenhouse conditions. Int. J. Mol. Sci. 13: 15321-15342.
Kapoulas, N., A. Koukounaras and Z. S. Ilić. 2017. Nutritional quality of lettuce and onion as companion plants from organic and conventional production in north Greece. Sci. Hortic. 219: 310–318. http://dx.doi.org/10.1016/j.scienta.2017.03.027
Karak, P. 2019. Biological activities of flavonoids: an overview. IJPSR. 10: 1567-1574. DOI: http://dx.doi.org/10.13040/IJPSR.0975-8232.10(4).1567-74.
Lin, D., M. Xiao, J. Zhao, Z. Li, B. Xing, X. Li, M. Kong, L. Li, Q. Zhang, Y. Liu, H. Chen, W. Qin, H. Wu and S. Chen. 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. 21: 1374. doi:10.3390/molecules21101374
López-Martínez, J. D., D. A. Vázquez-Díaz, J. R. Esparza-Rivera, J. L. García-Hernández, M. A. Castruita-Segura and P. Preciado-Rangel. 2016. Yield and nutraceutical quality of tomato fruit produced with nutrient solutions prepared using organic materials. Rev. Fitotec. Mex. 39: 409-414.
Luján-Hidalgo, M. C., L. E. Pérez-Gómez, M. Abud-Archila, R. Meza-Gordillo, V. M. Ruiz-Valdiviezo, L. Dendooven and F. A. Gutiérrez-Miceli. 2015. Growth, phenolic content and antioxidant activity in chincuya (Annona purpurea Moc & Sesse ex Dunal) cultivated with vermicompost and phosphate rock. Compost Sci. Util. 23: 276-283. DOI: 10.1080/1065657X.2015.1046617
Mabrouki, L., B. Zougari, M. Bendhifi, M. A. Borgi. 2015. Evaluation of antioxidant capacity, phenol and flavonoid contents of Opuntia streptacantha and Opuntia ficus indica fruits pulp. NATEC. 13: 2-8.
Maki-Díaz, G., C. B. Peña-Valdivia and M. L. Arevalo-Galarza. 2018. Trends in production, postharvest management and national and export commercialization of nopalito (Opuntia ficus-indica). Agro product. 11: 73-79.
Mardani-Talaee, M., A. Zibaee, G. Nouri-Ganbalani, V. Rahimi and P. Tajmiri. 2015. Effect of vermicompost on nutrition and intermediary metabolism of Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Arch. Phytopath. Plant Protect. DOI: 10.1080/03235408.2015.1091154
Márquez-Quiroz, C., P, Cano-Ríos, A. Moreno-Reséndez, E. Sánchez-Chávez, E. de la Cruz-Lázaro, U. Figueroa-Viramontes and V. Robledo-Torres. 2014. Effect of organic fertilization on yield and nutrient content of saladette tomato in greenhouse. ITEA. 110: 3-17. http://dx.doi.org/10.12706/itea.2014.001.
Pérez-Trueba, G. 2003. Los flavonoides: antioxidantes o prooxidantes. Rev. Cubana Invest. Biomed. 22: 48-57.
Omar, N. F., S. A. Hassan, U. K. Yusoff, N. A. Psyquay-Abdullah, P. E. Megat-Wahab and U. Sinniah. 2012. Phenolics, flavonoids, antioxidant activity and cyanogenic glycosides of organic and mineral-base fertilized cassava tubers. Molecules. 17: 2378-2387. doi:10.3390/molecules17032378
Olle, M. 2019. Review: vermicompost, its importance and benefit in agriculture. J. Agric. Sci. 2: 93–98
Orona-Castillo, I., A. Flores-Hernández, M. Rivera-González, J. Guillermo-Martínez, J. J. Espinoza-Arellano. 2003. Water productivity in prickly pear using drip irrigation in the Lagunera Region. Terra Latinoam. 21: 195-201.
Osorio-Esquivel, O., A. Ortiz-Moreno, V. B. Alvarez, L. Dorantes-Álvarez and M. Giusti. 2011. Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Res. Int. 44: 2160-2168. https://doi.org/10.1016/j.foodres.2011.02.011
Rocchetti, G., M. Pellizzoni, D. Montesano and L. Lucini. 2018. Italian Opuntia ficus-indica cladodes as rich source of bioactive compounds with health-promoting properties. Foods. 7: 1-12. DOI:10.3390/foods7020024
Rochín-Wong, C. S., N. Gómez-Meza, L. C. Montoya-Ballesteros and L. A. Medina-Juárez. 2013. Effect of drying and pickling processes on antioxidant capacity of phytochemicals of chiltepin (Capsicum annuum L. var. glabriusculum). Rev. Mex. Ing. Quím. 12: 227-239.
Roshanak, S., M. Rahimmalek and S. A. Hossein-Goli. 2016. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. J. Food Sci. Technol. 53: 721-729. DOI 10.1007/s13197-015-2030-x
Samanta, A., G. Das, S. K. Das. 2011. Roles of flavonoids in plants. Int. J. Pharm. Sci. Tech. 6: 12-35.
Sandoval-Trujillo, S. J., V. Ramírez-Cortés and B. E. Hernández-Bonilla. 2018. Análisis de los incentivos para la producción del nopal en Teotihuacán. Vinculategica. 4: 382-290.
Santos-Díaz, M. de S., A. P. Barba-de la Rosa, C. Héliès-Toussaint, F. Guéraud and A. Nègre-Salvayre. 2017. Opuntia spp.: Characterization and benefits in chronic diseases. Oxid. Med. Cell. Longev. 2017: 1-17. DOI: https://doi.org/10.1155/2017/8634249.
Schmidt, R. H., Jr. 1989. The arid zones of Mexico: climatic extremes and conceptualization of the Sonoran Desert. J. Arid Environ. 16: 241-256.
Singleton, V. L., R. Orthofer and R. M. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1.
Skerget, M., P. Kotnik, M. Hadolin, A. Hras, M., Simonic and Z. Knez. 2005. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 89: 191-198. DOI: https://doi.org/10.1016/j.foodchem.2004.02.025.
Statistical Package for Social Sciences (SPSS). 2017. IBM Corp. Released 2017. IBM SPSS Statistic for Windows, version 25.0. Armonk, NY: IBM Corp.
Torres-Ponce, R. L., D. Morales-Corral, M. L. Ballinas-Casarrubias and G. V. Nevárez-Moorillón, 2015. Nopal: semi-desert plant with applications in pharmaceuticals, food and animal nutrition. REMEXCA. 6: 1129-1142.
Vázquez-Vázquez, C., G. I. Ojeda-Mijares, M. Fortis-Hernández, P. Preciado-Rangel and J. Antonio-González. 2015. Organic substrates in the production of basil (Ocimum basilicum L.) and its phytochemical quality. REMEXCA. 6: 1833-1844.
Vicente-Vicente, L., M. Prieto and A. I. Morales. 2013. Efficacy and safety of quercetin as dietary supplement. Rev. Toxicol. 30: 171-181
Zhishen, J., Mengcheng, T., Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2.
Statistics